Publications
Conference Papers
How Does Message Passing Improve Collaborative Filtering?
M. Ju, W. Shiao, Z. Guo, Y. Ye, Y. Liu, N. Shah, T. Zhao
NeurIPS 24 [pdf] [code]From Coarse to Fine: Enable Comprehensive Graph Self-supervised Learning with Multi-granular Semantic Ensemble
Q. Wen, M. Ju, Z. Ouyang, C. Zhang, Y. Ye
ICML 24 [pdf] [code]GraphPatcher: Mitigating Degree Bias for Graph Neural Networks via Test-time Augmentation
M. Ju, T. Zhao, W. Yu, N. Shah, Y. Ye
NeurIPS 23 [pdf] [code]Multi-task Self-supervised Graph Neural Networks Enable Stronger Task Generalization
M. Ju, T. Zhao, Q. Wen, W. Yu, N. Shah, Y. Ye, C. Zhang
ICLR 23 [pdf] [code]Generate rather than Retrieve: Large Language Models are Strong Context Generators
W. Yu, D. Iter, S. Wang, Y. Xu, M. Ju, S. Sanyal, C. Zhu, M. Zeng, M. Jiang
ICLR 23 [pdf] [code]Chasing All-Round Graph Representation Robustness: Model, Training, and Optimization
C. Zhang, Y. Tian, M. Ju, Z. Liu, Y. Ye, N. Chawla, C. Zhang
ICLR 23 [pdf] [code]Let Graph be the Go Board: Gradient-free Node Injection Attack for Graph Neural Networks via Reinforcement Learning
M. Ju, Y. Fan, C. Zhang, Y. Ye
AAAI 23 [pdf] [code]Self-Supervised Graph Structure Refinement for Graph Neural Networks
J. Zhao, Q. Wen, M. Ju, C. Zhang, Y. Ye
WSDM 23 [pdf] [code]Leveraing Comment Retrieval for Code Summarization
S. Hou, L. Chen, M. Ju, Y. Ye
ECIR 23 [pdf]Grape: Knowledge Graph Enhance Passage Reader for Open-domain Question Answering
M. Ju*, W. Yu*, T. Zhao, C. Zhang, Y. Ye
EMNLP 22 (Findings) [pdf] [code]Heterogeneous Temporal Graph Neural Network
Y. Fan, M. Ju, C. Zhang, Y. Ye
SDM 22 [pdf] [code]Adaptive Kernel Graph Neural Network
M. Ju, S. Hou, Y. Fan, J. Zhao, Y. Ye, L. Zhao
AAAI 22 [pdf] [code]Dr.Emotion: Disentangled Representation Learning for Emotion Analysis on Social Media to Improve Community Resilience in the COVID-19 Era and Beyond
M. Ju, W. Song, S. Sun, Y. Ye, Y. Fan, K. Loparo, L. Zhao
WWW 21 [pdf] [code]Heterogeneous Temporal Graph Transformer: An Intelligent System for Evolving Android Malware Detection
Y. Fan, M. Ju, S. Hou, Y. Ye, W. Wan, K. Wang, Y. Mei, Q. Xiong
KDD 21 (Applied Data Science Track) [pdf]Disentangled Representation Learning in Heterogeneous Information Network for Large-scale Android Malware Detection in the COVID-19 Era and Beyond
S. Hou, Y. Fan, M. Ju, Y. Ye, W. Wan, K. Wang, Y. Mei, Q. Xiong, F. Shao
AAAI 21 [pdf]Community Mitigation: A Data-driven System for Covid-19 Risk Assessment in a Hierachical Manner
Y. Ye, Y. Fan, S. Hou, Y. Zhang, Y. Qian, S. Sun, Q. Peng, M. Ju, W. Song, K. Loparo
CIKM 21 [pdf]A Multi-representation Ensemble Approach to Classifying Vocal Diseases
M. Ju, Z. Jiang, Y. Chen, S. Ray
Big Data 18 (3rd place award for FEMH Challenge) [pdf] [code]
Workshop Papers
- Robust Training Objectives Improve Embedding-based Retrieval in Industrial Recommendation Systems
M. Kolodner, M. Ju, Z. Fan, T. Zhao, E. Ghazizadeh, Y. Wu, N. Shah, Y. Liu RobustRecSys@RecSys’24 [pdf]
Journal Papers
Exploring Contrast Consistency of Open-domain Question Answering Systems on Minimally Edited Questions
Z. Zhang, W. Yu, Z. Ning, M. Ju, M. Jiang
TACL, 2023 [pdf] [code]a-Satellite: An AI-Driven System and Benchmark Datasets for Dynamic COVID-19 Risk Assessment in the United States
Y. Ye, S. Hou, Y. Fan, Y. Zhang, Y. Qian, S. Sun, Q. Peng, M. Ju, W. Song, K. Loparo
JBHI, 2020.7 [pdf]Development and Validation of a Mahcine Learning Algorithm for Predicting Response to Anticholinergic Medications for Overactive Bladder Syndrome
D. Sheyn, M. Ju, S. Zhang, C. Anyaeche, A. Hijaz, J. Mangel, S. Mahajan, B. Conroy, S. El-Nashar, S. Ray
Obstetrics & Gynecology, 2019.9 [pdf]